FASTENERS, MEASUREMENTS AND CONVERSIONS

Bolts, Nuts and Other Threaded Retainers

Although there are a great variety of fasteners found in the modern car or truck, the most commonly used retainer is the threaded fastener (nuts, bolts, screws, studs, etc.). Most threaded retainers may be reused, provided that they are not damaged in use or during the repair. Some retainers (such as stretch bolts or torque prevailing nuts) are designed to deform when tightened or in use and should not be reinstalled.

Whenever possible, we will note any special retainers which should be replaced during a procedure. But you should always inspect the condition of a retainer when it is removed and replace any that show signs of damage. Check all threads for rust or corrosion which can increase the torque necessary to achieve the desired clamp load for which that fastener was originally selected. Additionally, be sure that the driver surface of the fastener has not been compromised by rounding or other damage. In some cases a driver surface may become only partially rounded, allowing the driver to catch in only one direction. In many of these occurrences, a fastener may be installed and tightened, but the driver would not be able to grip and loosen the fastener again.

<table>
<thead>
<tr>
<th>BOLTS</th>
<th>NUTS</th>
<th>SCREWS</th>
<th>LOCKWASHERS</th>
<th>STUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADE 9</td>
<td>PLAIN</td>
<td>ROUND</td>
<td>INTERNAL TOOTH</td>
<td></td>
</tr>
<tr>
<td>GRADE 2</td>
<td>JAM</td>
<td>PAN</td>
<td>EXTERNAL TOOTH</td>
<td></td>
</tr>
<tr>
<td>GRADE 5</td>
<td>CASTLE (CASTELLATED)</td>
<td>FIGURE</td>
<td>SPLIT</td>
<td></td>
</tr>
<tr>
<td>GRADE 8</td>
<td>SELF-LOCKING</td>
<td>HEXAGON</td>
<td>PLAIN</td>
<td></td>
</tr>
<tr>
<td>GRADE 7</td>
<td>SPEED</td>
<td>SHEET METAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRADE 9</td>
<td>ALLEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARRIAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are many different types of threaded retainers found on vehicles.
Threaded retainer sizes are determined using these measurements

A - Length
B - Diameter (major diameter)
C - Threads per inch or mm
D - Thread length
E - Size of the wrench required
F - Root diameter (minor diameter)

If you must replace a fastener, whether due to design or damage, you must ALWAYS be sure to use the proper replacement. In all cases, a retainer of the same design, material and strength should be used. Markings on the heads of most bolts will help determine the proper strength of the fastener. The same material, thread and pitch must be selected to assure proper installation and safe operation of the vehicle afterwards.

Thread gauges are available to help measure a bolt or stud’s thread. Most automotive and hardware stores keep gauges available to help you select the proper size. In a pinch, you can use another nut or bolt for a thread gauge. If the bolt you are replacing is not too badly damaged, you can select a match by finding another bolt which will thread in its place. If you find a nut which threads properly onto the damaged bolt, then use that nut to help select the replacement bolt.

WARNING

Be aware that when you find a bolt with damaged threads, you may also find the nut or drilled hole it was threaded into has also been damaged. If this is the case, you may have to drill and tap the hole, replace the nut or otherwise repair the threads. NEVER try to force a replacement bolt to fit into the damaged threads.

Torque

Torque is defined as the measurement of resistance to turning or rotating. It tends to twist a body about an axis of rotation. A common example of this would be tightening a threaded retainer such as a nut, bolt or screw. Measuring torque is one of the most common ways to help assure that a threaded retainer has been properly fastened.
When tightening a threaded fastener, torque is applied in three distinct areas, the head, the bearing surface and the clamp load. About 50 percent of the measured torque is used in overcoming bearing friction. This is the friction between the bearing surface of the bolt head, screw head or nut face and the base material or washer (the surface on which the fastener is rotating). Approximately 40 percent of the applied torque is used in overcoming thread friction. This leaves only about 10 percent of the applied torque to develop a useful clamp load (the force which holds a joint together). This means that friction can account for as much as 90 percent of the applied torque on a fastener.

TORQUE WRENCHES

Various styles of torque wrenches are usually available at your local automotive supply store

In most applications, a torque wrench can be used to assure proper installation of a fastener. Torque wrenches come in various designs and most automotive supply stores will carry a variety to suit your needs. A torque wrench should be used any time we supply a specific torque value for a fastener. Again, the general rule of "if you are using the right tool for the job, you should not have to strain to tighten a fastener" applies here.

Beam Type

The beam type torque wrench is one of the most popular types. It consists of a pointer attached to the head that runs the length of the flexible beam (shaft) to a scale located near the handle. As the wrench is pulled, the beam bends and the pointer indicates the torque using the scale.

Click (Breakaway) Type

Another popular design of torque wrench is the click type. To use the click type wrench you pre-adjust it to a torque setting. Once the torque is reached, the wrench has a reflex signaling feature that causes a momentary breakaway of the torque wrench body, sending an impulse to the operator’s hand.

Pivot Head Type
Some torque wrenches (usually of the click type) may be equipped with a pivot head which can allow it to be used in areas of limited access. BUT, it must be used properly. To hold a pivot head wrench, grasp the handle lightly, and as you pull on the handle, it should be floated on the pivot point. If the handle comes in contact with the yoke extension during the process of pulling, there is a very good chance the torque readings will be inaccurate because this could alter the wrench loading point. The design of the handle is usually such as to make it inconvenient to deliberately misuse the wrench.

It should be mentioned that the use of any U−joint, wobble or extension will have an effect on the torque readings, no matter what type of wrench you are using. For the most accurate readings, install the socket directly on the wrench driver. If necessary, straight extensions (which hold a socket directly under the wrench driver) will have the least effect on the torque reading. Avoid any extension that alters the length of the wrench from the handle to the head/driving point (such as a crow's foot). U−joint or wobble extensions can greatly affect the readings; avoid their use at all times.

Rigid Case (Direct Reading)

A rigid case or direct reading torque wrench is equipped with a dial indicator to show torque values. One advantage of these wrenches is that they can be held at any position on the wrench without affecting accuracy. These wrenches are often preferred because they tend to be compact, easy to read and have a great degree of accuracy.

TORQUE ANGLE METERS

Because the frictional characteristics of each fastener or threaded hole will vary, clamp loads which are based strictly on torque will vary as well. In most applications, this variance is not significant enough to cause worry. But, in certain applications, a manufacturer’s engineers may determine that more precise clamp loads are necessary (such is the case with many aluminum cylinder heads). In these cases, a torque angle method of installation would be specified. When installing fasteners which are torque angle tightened, a predetermined
seating torque and standard torque wrench are usually used first to remove any compliance from the joint. The fastener is then tightened the specified additional portion of a turn measured in degrees. A torque angle gauge (mechanical protractor) is used for these applications.

Standard and Metric Measurements

Throughout this manual, specifications are given to help you determine the condition of various components on your vehicle, or to assist you in their installation. Some of the most common measurements include length (in. or cm/mm), torque (ft. lbs., inch lbs. or Nm) and pressure (psi, in. Hg, kPa or mm Hg). In most cases, we strive to provide the proper measurement as determined by the manufacturer's engineers.

Though, in some cases, that value may not be conveniently measured with what is available in your toolbox. Luckily, many of the measuring devices which are available today will have two scales so the Standard or Metric measurements may easily be taken. If any of the various measuring tools which are available to you do not contain the same scale as listed in the specifications, use the accompanying conversion factors to determine the proper value.

The conversion factor chart is used by taking the given specification and multiplying it by the necessary conversion factor. For instance, looking at the first line, if you have a measurement in inches such as "free-play should be 2 in." but your ruler reads only in millimeters, multiply 2 in. by the conversion factor of 25.4 to get the metric equivalent of 50.8mm. Likewise, if the specification was given only in a Metric measurement, for example in Newton Meters (Nm), then look at the center column first. If the measurement is 100 Nm, multiply it by the conversion factor of 0.738 to get 73.8 ft. lbs.